Friday, August 21, 2009

Soil Pollution

Soil Pollution

Excavation showing soil contamination at a disused gasworks.

Soil pollution is caused by the presence of man-made chemicals

or other alteration in the natural soil environment.This type of contamination typically arises from the rupture of underground storage tanks,application of pesticides,percolation of contaminated surface water to subsurface strata,oil and fuel dumping,leaching of wastes from landfills or direct discharge of industrial wastes to the soil.The most common chemicals involved are petroleum hydrocarbons,

solvents,pesticides,lead and other heavy metals.This occurrence of this phenomenon is correlated with the degree of industrializations and intensities of chemical usage.

The concern over soil contamination stems primarily from health risks,both of direct contact and from secondary contamination of water supplies.Mapping of contaminated soil sites and the resulting cleanup are time consuming and expensive tasks,requiring extensive amounts of geology,hydrology,chemistry and computer modeling skills.

It is in North America and Western Europe that the extent of contaminated land is most well known,with many of countries in these areas having a legal framework to identify and deal with this environmental problem;this however may well be just the tip of the iceberg with developing countries very likely to be the next generation of new soil contamination cases.

The immense and sustained growth of the People's Republic of China since the 1970s has exacted a price from the land in increased soil pollution.The State Environmental Protection Administration believes it to be a threat to the environment,to food safety and to sustainable agriculture.According to a scientific sampling,150 million mi (100,000 square kilometres) of China’s cultivated land have been polluted,with contaminated water being used to irrigate a further 32.5 million mi (21,670 square kilometres) and another 2 million mi (1,300 square kilometres) covered or destroyed by solid waste.In total,the area accounts for one-tenth of

China’s cultivatable land,and is mostly in economically developed areas.An estimated 12 million tonnes of grain are contaminated by heavy metals every year,causing direct losses of 20 billion yuan (US$2.57 billion).

The United States,while having some of the most widespread soil contamination,has actually been a leader in defining and implementing standards for cleanup.Other industrialized countries have a large number of contaminated sites,but lag the U.S. in executing remediation.Developing countries may be leading in the next generation of new soil contamination cases.

Each year in the U.S., thousands of sites complete soil contamination cleanup,some by using microbes that “eat up” toxic chemicals in soil,many others by simple excavation and others by more expensive high-tech soil vapor extraction or air stripping.Efforts proceed worldwide to identify new sites of soil contamination.


Ecosystem Effects

Not unexpectedly, soil contaminants can have significant deleterious consequences for ecosystems.There are radical soil chemistry changes which can arise from the presence of many hazardous chemicals even at low concentration of the contaminant species.These changes can manifest in the alteration of metabolism of endemic microorganisms and arthropods resident ina given soil environment.The result can be virtual eradication of some of the primary food chain, which in turn have major consequences for predator or consumer species.Even if the chemical effect on lower life forms is small, the lower pyramid levels of the food chain may ingest alien chemicals,which normally become more concentrated for each consuming rung of the food chain. Many of these effects are now well known, such as the concentration of persistent DDT materials for avian consumers,leading to weakening of egg shells,increased chick mortality and potentially species extinction.

Effects occur to agricultural lands which have certain types of soil contamination.Contaminants typically alter plant metabolism, most commonly to reduce crop yields.This has a secondary effect upon soil conservation,since the languishing crops cannot shield the Earth's soil mantle from erosion phenomena.Some of these chemical contaminants have long half-lives and in other cases derivative chemicals are formed from decay of primary soil contaminants.


Cleanup Options

Microbes can be used in soil cleanup

Cleanup or remediation is analyzed by environmental scientists who utilize field measurement of soil chemicals and also apply computer models for analyzing tra

nsport and fate of soil chemicals. Thousands of soil contamination cases are currently in active cleanup across the U.S. as of 2006. There are several principal strategies for remediation:

  • Excavate soil and take it to a disposal site away from ready pathways for human or sensitive ecosystem contact. This technique also applies to dredging of bay muds containing toxins.
  • Aeration of soils at the contaminated site (with attendant risk of creating air pollution)
  • Thermal remediation by introduction of heat to raise subsurface temperatures sufficiently high to volatize chemical contaminants out of the soil for vapour extraction.Technologies include ISTD,electrical resistance heating (ERH), and ET-DSPtm.
  • Bioremediation,involving microbial digestion of certain organic chemicals.Techniques used in bioremediation include landfarming,biostimulation and bioaugmentating soil biota with commercially available microflora.
  • Extraction of groundwater or soil vapor with an active electromechanical system,with subsequent stripping of the contaminants from the extract.
  • Containment of the soil contaminants (such as by capping or paving over in place).

Types of soil pollution control

Body movement causes contamination and protective clothing such as hats, cleanroom suits and face masks are basic forms of contamination control. Apart from people, the other common way for contamination to enter is on the wheels of trolleys used to transport equipment.

To prevent airborne contamination, high efficiency particulate air (HEPA) filters, airlocks and cleanroom suits are used.HEPA filtration systems used in the medical sector incorporate high-energy ultra-violet light units to kill off the live bacteria and viruses trapped by the filter media.These measures restrict the number of particulates within the atmosphere, and inhibit growth in those that are viable.

Studies by 3M show that over 80% of contamination enters the cleanroom through entrances and exits, mostly at or near floor level.To combat this suitable flooring systems are used that effectively attract, retain and inhibit growth of viable organisms.Studies show that the most effective type of flooring system is one of polymer composition.

Polymer mats are particularly effective due to their suppleness as they allow for more contact with serration on shoes and wheels and can accommodate for more particles whilst remaining effective.An electrostatic potential adds to the effectiveness of this type of contamination control as it holds particles until being cleaned.This method of attracting and retaining particles is more effective than mats with an active adhesive coating which needs to be peeled and is often not as supple. As long as the tack level of the mat is greater than the donor (foot or wheel), the contamination touching the surface will be removed.Very high tack surfaces pose a contamination threat because they are prone to pulling off over-shoe protection.Polymeric flooring is produced to ensure a higher level of tackiness than the surfaces it comes into contact with, without causing discomfort and potentially damaging ‘stickiness’.

Sunday, August 16, 2009

Heating too produce a lot of Pollution





Thermal Pollution


INTRODUCTION

Thermal pollution is the degradation of water quality by any process that changes ambient water temperature. A common cause of thermal pollution is the use of water as a coolant by power plants and industrial manufacturers. When water used as a coolant is returned to the natural environment at a higher temperature, the change in temperature impacts organisms by decreasing oxygen supply and affecting ecosystem composition. Urban runoff--stormwater discharged to surface waters from roads and parking lots--can also be a source of elevated water temperatures.

When a power plant first opens or shuts down for repair, fish and other organisms adapted to particular temperature range can be killed by the abrupt rise in water temperature known as 'thermal shock'.

Thermal pollution can also be caused by the release of very cold water from the base of reservoirs into warmer rivers. This affects fish (particularly their eggs and larvae), macroinvertebrates and river productivity.

Ecological effects — warm water

Elevated temperature typically decreases the level of dissolved oxygen in water. The decrease in levels of DO can harm aquatic animals such as fish, amphibians and copepods. Thermal pollution may also increase the metabolic rate of aquatic animals, as enzyme activity, resulting in these organisms consuming more food in a shorter time than if their environment were not changed. An increased metabolic rate may result in food source shortages, causing a sharp decrease in a population. Changes in the environment may also result in a migration of organisms to another, more suitable environment, and to in-migration of fishes that normally only live in warmer waters elsewhere. This leads to competition for fewer resources; the more adapted organisms moving in may have an advantage over organisms that are not used to the warmer temperature. As a result one has the problem of compromising food chains of the old and new environments. Biodiversity can be decreased as a result.

It is known that temperature changes of even one to two degrees Celsius can cause significant changes in organism metabolism and other adverse cellular biology effects. Principal adverse changes can include rendering cell walls less permeable to necessary osmosis, coagulation of cell proteins, and alteration of enzyme metabolism. These cellular level effects can adversely affect mortality and reproduction.

Primary producers are affected by warm water because higher water temperature increases plant growth rates, resulting in a shorter lifespan and species overpopulation. This can cause an algae bloom which reduces the oxygen levels in the water. The higher plant density leads to an increased plant respiration rate because the reduced light intensity decreases photosynthesis. This is similar to the eutrophication that occurs when watercourses are polluted with leached agricultural inorganic fertilizers.

A large increase in temperature can lead to the denaturing of life-supporting enzymes by breaking down hydrogen- and disulphide bonds within the quaternary structure of the enzymes. Decreased enzyme activity in aquatic organisms can cause problems such as the inability to break down lipids, which leads to malnutrition.

In limited cases, warm water has little deleterious effect and may even lead to improved function of the receiving aquatic ecosystem. This phenomenon is seen especially in seasonal waters and is known as thermal enrichment. An extreme case is derived from the aggregational habits of the manatee, which often uses power plant discharge sites during winter. Projections suggest that manatee populations would decline upon the removal of these discharges.

The temperature can be as high as 70° Fahrenheit for freshwater, 80° F for saltwater, and 85° F for tropical fish.

Ecological effects — cold water

Releases of unnaturally cold water from reservoirs can dramatically change the fish and macroinvertebrate fauna of rivers, and reduce river productivity. In Australia, where many rivers have warmer temperature regimes, native fish species have been eliminated, and macroinvertebrate fauna have been drastically altered and impoverished. The temperatures for freshwater fish can be as low as 50° F, saltwater 75° F, and tropical 80° F.


Urban runoff
During warm weather, urban runoff can have significant thermal impacts on small streams, as stormwater passes over hot parking lots, roads and sidewalks. Stormwater management facilities that absorb runoff or direct it into groundwater, such as bioretention systems and infiltration basins, can reduce these thermal effects. Retention basins tend to be less effective at reducing temperature, as the water may be heated by the sun before being discharged to a receiving stream.

Control of thermal pollution

Industrial wastewater
In the United States, thermal pollution from industrial sources is generated mostly by power plants, petroleum refineries, pulp and paper mills, chemical plants, steel mills and smelters. Heated water from these sources may be controlled with:

Some facilities use once-through cooling which do not reduce temperature as effectively as the above systems. For example, the Potrero Generating Station in San Francisco, which uses once-through cooling, discharges water to San Francisco Bay approximately 10° C (20° F) above the ambient bay temperature.

Sunday, August 9, 2009

Save Water

Water Pollution

Water pollution is the contamination of water bodies such as lakes, rivers, oceans, and groundwater. All water pollution affects organisms and plants that live in these water bodies and in almost all cases the effect is damaging either to individual species and populations but also to the natural biological communities. It occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove harmful constituents.

Introduction

Water pollution is a major problem in the global context. It has been suggested that it is the leading worldwide cause of deaths and diseases and that it accounts for the deaths of more than 14,000 people daily. In addition to the acute problems of water pollution in developing countries, industrialized countries continue to struggle with pollution problems as well. In the most recent national report on water quality in the United States, 45 percent of assessed stream miles, 47 percent of assessed lake acres, and 32 percent of assessed bay and estuarine square miles were classified as polluted.

Water is typically referred to as polluted when it is impaired by anthropogenic contaminants and either does not support a human use, like serving as drinking water, and/or undergoes a marked shift in its ability to support its constituent biotic communities, such as fish. Natural phenomena such as volcanoes, algae blooms, storms, and earthquakes also cause major changes in water quality and the ecological status of water. Water pollution has many causes and characteristics.


Point source pollution

Point source pollution refers to contaminants that enter a waterway through a discrete conveyance, such as a pipe or ditch. Examples of sources in this category include discharges from a sewage treatment plant, a factory, or a city storm drain. The U.S. Clean Water Act (CWA) defines point source for regulatory enforcement purposes.


Non-point source pollution

Non-point source (NPS) pollution refers to diffuse contamination that does not originate from a single discrete source. NPS pollution is often acumulative effect of small amounts of contaminants gathered from a large area. Nutrient runoff in stormwater from "sheet flow" over an agricultural field or a forest are sometimes cited as examples of NPS pollution. Contaminated stormwater washed off of parking lots, roads and highways, called urban runoff, is sometimes included under the category of NPS pollution.

However, this runoff is typically channeled into storm drain systems and discharged through pipes to local surface waters, and is a point source. The CWA definition of point source was amended in 1987 to include municipal storm sewer systems, as well as industrial stormwater, such as from construction sites.


Groundwater pollution

Interactions between groundwater and surface water are complex. Consequently, groundwater pollution, sometimes referred to as groundwater contamination, is not as easily classified as surface water pollution.By its very nature, groundwater aquifers are susceptible to contamination from sources that may not directly affect surface water bodies, and the distinction of point vs. nonpoint source may be irrelevant. A spill of a chemical contaminant on soil, located away from a surface water body, may not necessarily create point source or non-point source pollution, but nonetheless may contaminate the aquifer below. Analysis of groundwater contamination may focus on soil characteristics and hydrology, as well as the nature of the contaminant itself.

Causes of water pollution

The specific contaminants leading to pollution in water include a wide spectrum of chemicals, pathogens, and physical or sensory changes such as elevated temperature and discoloration. While many of the chemicals and substances that are regulated may be naturally occurring (calcium, sodium, iron, manganese, etc.) the concentration is often the key in determining what is a natural component of water, and what is a contaminant.

Oxygen-depleting substances may be natural materials, suc

h as plant matter (e.g. leaves and grass) as well as man-made chemicals. Other natural and anthropogenic substances may cause turbidity (cloudiness) which blocks light and disrupts plant growth, and clogs the gills of some fish species.

Many of the chemical substances are toxic. Pathogens can produce waterborne diseases in either human or animal hosts. Alteration of water's physical chemistry include acidity (change in pH), electrical conductivity, temperature, and eutrophication. Eutrophication is the fertilization of surface water by nutrients that were previously scarce.


Chemical and other contaminants

Muddy river polluted by sediment. Photo courtesy of United States Geological Survey.

Contaminants may include organic and inorganic substances.

Organic water pollutants include:

Inorganic water pollutants include:

Macroscopic pollution—large visible items polluting the water—may be termed "floatables" in an urban stormwater context, or marine debris when found on the open seas, and can include such items as:

  • Trash (e.g. paper, plastic, or food waste) discarded by people on the ground, and that are washed by rainfall into storm drains and eventually discharged into surface waters
  • Nurdles, small ubiquitous waterborne plastic pellets
  • Shipwrecks, large derelict ships

Transport and chemical reactions of water pollutants

Most water pollutants are eventually carried by rivers into the oceans. In some areas of the world the influence can be traced hundred miles from the mouth by studies using hydrology transport models. Advanced computer models such as SWMM or the DSSAM Model have been used in many locations worldwide to examine the fate of pollutants in aquatic systems.

Indicator filter feeding species such as copepods have also been used to study pollutant fates in the New York Bight, for example. The highest toxin loads are not directly at the mouth of the Hudson River, but 100 kilometers south, since several days are required for incorporation into planktonic tissue. The Hudson discharge flows south along the coast due to coriolis force. Further south then are areas of oxygen depletion, caused by chemicals using up oxygen and by algae blooms, caused by excess nutrients from algal cell death and decomposition. Fish and shellfish kills have been reported, because toxins climb the food chain after small fish consume copepods, then large fish eat smaller fish, etc. Each successive step up the food chain causes a stepwise concentration of pollutants such as heavy metals (e.g. mercury) and persistent organic pollutants such as DDT. This is known as biomagnification, which is occasionally used interchangeably with bioaccumulation.

Large gyres (vortexes) in the oceans trap floating plastic debris. The North Pacific Gyre for example has collected the so-called "Great Pacific Garbage Patch" that is now estimated at 100 times the size of Texas. Many of these long-lasting pieces wind up in the stomachs of marine birds and animals. This results in obstruction of digestive pathways which leads to reduced appetite or even starvation.

Many chemicals undergo reactive decay or chemically change especially over long periods of time in groundwater reservoirs. A noteworthy class of such chemicals is the chlorinated hydrocarbons such as trichloroethylene (used in industrial metal degreasing and electronics manufacturing) and tetrachloroethylene used in the dry cleaning industry (note latest advances in liquid carbon dioxide in dry cleaning that avoids all use of chemicals). Both of these chemicals, which are carcinogens themselves, undergo partial decomposition reactions, leading to new hazardous chemicals (including dichloroethylene and vinyl chloride).

Groundwater pollution is much more difficult to abate than surface pollution because groundwater can move great distances through unseen aquifers. Non-porous aquifers such as clays partially purify water of bacteria by simple filtration (adsorption and absorption), dilution, and, in some cases, chemical reactions and biological activity: however, in some cases, the pollutants merely transform to soil contaminants. Groundwater that moves through cracks and caverns is not filtered and can be transported as easily as surface water. In fact, this can be aggravated by the human tendency to use natural sinkholes as dumps in areas of Karst topography.

There are a variety of secondary effects stemming not from the original pollutant, but a derivative condition. An example is silt-bearing surface runoff, which can inhibit the penetration of sunlight through the water column, hampering photosynthesis in aquatic plants.

Control of water pollution

Domestic sewage

In urban areas, domestic sewage is typically treated by centralized sewage treatment plants. I

n the U.S., most of these plants are operated by local government agencies. Municipal treatment plants are designed to control conventional pollutants: BOD and suspended solids. Well-designed and operated systems (i.e., secondary treatment or better) can remove 90 percent or more of these pollutants. Some plants have additional sub-systems to treat nutrients and pathogens. Most municipal plants are not designed to treat toxic pollutants found in industrial wastewater.

Cities with sanitary sewer overflows or combined sewer overflows employ one or more engineering approaches to reduce discharges of untreated sewage, including:

  • utilizing a green infrastructure approach to improve stormwater management capacity throughout the system

  • repair and replacement of leaking and malfunctioning equipment
  • increasing overall hydraulic capacity of the sewage collection system (often a very expensive option).

A household or business not served by a municipal treatment plant may have an individual septic tank, which treats the wastewater on site and discharges into the soil. Alternatively, domestic wastewater may be sent to a nearby privately-owned treatment system (e.g. in a rural community).

Industrial wastewater

Dissolved air flotation system for treating industrial wastewater.

Some industrial facilities generate ordinary domestic sewage that can be treated by municipal facilities. Industries that generate wastewater with high concentrations of conventional pollutants (e.g. oil and grease), toxic pollutants (e.g. heavy metals, volatile organic compounds) or other nonconventional pollutants such as ammonia, need specialized treatment systems. Some of these facilities can install a pre-treatment system to remove the toxic components, and then send the partially-treated wastewater to the municipal system. Industries generating large volumes of wastewater typically operate their own complete on-site treatment systems.

Some industries have been successful at redesigning their manufacturing processes to reduce or eliminate pollutants, through a process called pollution prevention.

Heated water generated by power plants or manufacturing plants may be controlled with:

Agricultural wastewater

Riparian buffer lining a creek in Iowa

Nonpoint source controls
Sediment (loose soil) washed off fields is the largest source of agricultural pollution in the United States.Farmers may utilize erosion controls to reduce runoff flows and retain soil on their fields. Common techniques include contour plowing, crop mulching, crop rotation, planting perennial crops and installing riparian buffers.

Nutrients (nitrogen and phosphorus) are typically applied to farmland as commercial fertilizer; animal manure; or spraying of municipal or industrial wastewater (effluent) or sludge. Nutrients may also enter runoff from crop residues, irrigation water, wildlife, and atmospheric deposition. Farmers can develop and implement nutrient management plans to reduce excess application of nutrients.

To minimize pesticide impacts, farmers may use Integrated Pest Management (IPM) techniques (which can include biological pest control) to maintain control over pests, reduce reliance on chemical pesticides, and protect water quality.

Confined Animal Feeding Operation in the United States

Point source wastewater treatment
Farms with large livestock and poultry operations, such as factory farms, are called concentrated animal feeding operations or confined animal feeding operations in the U.S. and are being subject to increasing government regulation.Animal slurries are usually treated by containment in lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes, as are anaerobic lagoons. Some animal slurries are treated by mixing with straw and composted at high temperature to produce a bacteriologically sterile and friable manure for

Wednesday, August 5, 2009

More NOISE is Harmful

NOISE POLLUTION


INTRODUCTION

Noise pollution or environmental noise is displeasing human-, animal- or machine-created sound that disrupts the activity or balance of human or animal life. A common form of noise pollution is from transportation, principally motor vehicles. The word noise comes from the Latin word nausea meaning seasickness.

The source of most noise worldwide is transportation systems, motor vehicle noise, but also including aircraft noise and rail noise. Poor urban planning may give rise to noise pollution, since side-by-side industrial and residential buildings can result in noise pollution in the residential area.

Other sources are car alarms, emergency service sirens, office equipment, factory machinery, construction work, groundskeeping equipment, barking dogs, appliances, power tools, lighting hum, audio entertainment systems, loudspeakers and noisy people.

Human health effects

Noise health effects are both health and behavioural in nature. The unwanted sound is called noise. This unwanted sound can damage physiological and psychological health. Noise pollution can cause annoyance and aggression, hypertension, high stress levels, tinnitus, hearing loss, sleep disturbances, and other harmful effects.Furthermore, stress and hypertension are the leading causes to health problems, whereas tinnitus can lead to forgetfulness, severe depression and at times panic attacks.

Chronic exposure to noise may cause noise-induced hearing loss. Older males exposed to significant occupational noise demonstrate significantly reduced hearing sensitivity than their non-exposed peers, though differences in hearing sensitivity decrease with time and the two groups are indistinguishable by age 79. A comparison of Maaban tribesmen, who were insignificantly exposed to transportation or industrial noise, to a typical U.S. population showed that chronic exposure to moderately high levels of environmental noise contributes to hearing loss.

High noise levels can contribute to cardiovascular effects and exposure to moderately high levels during a single eight hour period causes a statistical rise in blood pressure of five to ten points and an increase in stress and vasoconstriction leading to the increased blood pressure noted above as well as to increased incidence of coronary artery disease.

Noise pollution is also a cause of annoyance. A 2005 study by Spanish researchers found that in urban areas households are willing to pay approximately four Euros per decibel per year for noise reduction.


Environmental effects

Noise can have a detrimental effect on animals by causing stress, increasing risk of mortality by changing the delicate balance in predator/prey detection and avoidance, and by interfering with their use of sounds in communication especially in relation to reproduction and in navigation. Acoustic overexposure can lead to temporary or permanent loss of hearing.

An impact of noise on animal life is the reduction of usable habitat that noisy areas may cause, which in the case of endangered species may be part of the path to extinction. One of the best known cases of damage caused by noise pollution is the death of certain species of beached whales, brought on by the loud sound of military sonar.

Noise also makes species communicate louder, which is called Lombard vocal response.Scientists and researchers have conducted experiments that show whales' song length is longer when submarine-detectors are on.If creatures don't "speak" loud enough, their voice will be masked by anthropogenic sounds. These unheard voices might be warnings, finding of prey, or preparations of net-bubbling. When one species begins speaking louder, it will mask other species' voice, causing the whole ecosystem to eventually speak louder.

European Robins living in urban environments are more likely to sing at night in places with high levels of noise pollution during the day, suggesting that they sing at night because it is quieter, and their message can propagate through the environment more clearly.Interestingly, the same study showed that daytime noise was a stronger predictor of nocturnal singing than night-time Light pollution, to which the phenomenon is often attributed.

Zebra finches become less faithful to their partners when exposed to traffic noise. This could alter a population's evolutionary trajectory by selecting traits, sapping resources normally devoted to other activities and thus lead to profound genetic and evolutionary consequences.

Mitigation and control of noise

The sound tube in Melbourne, Australia, designed to reduce roadway noise without detracting from the area's aesthetics.

Technology to mitigate or remove noise can be applied as follows:

There are a variety of strategies for mitigating roadway noise including: use of noise barriers, limitation of vehicle speeds, alteration of roadway surface texture, limitation of heavy vehicles, use of traffic controls that smooth vehicle flow to reduce braking and acceleration, and tire design. An important factor in applying these strategies is a computer model for roadway noise, that is capable of addressing local topography, meteorology, traffic operations and hypothetical mitigation. Costs of building-in mitigation can be modest, provided these solutions are sought in the planning stage of a roadway project.

Aircraft noise canbe reduced to some extent by design of quieter jet engines, which was pursued vigorously in the 1970s and 1980s. This strategy has brought limited but noticeable reduction of urban sound levels. Reconsideration of operations, such as altering flight paths and time of day runway use, have demonstrated benefits for residential populations near airports. FAA sponsored residential retrofit (insulation) programs initiated in the 1970s has also enjoyed success in reducing interior residential noise in thousands of residences across the United States.

Exposure of workers

o Industrial noise has been addressed since the 1930s. Changes include redesign of industrial equipment, shock mounting assemblies and physical barriers in the workplace.

Noise Free America, a national anti-noise pollution organization, regularly lobbies for the enforcement of noise ordinances at all levels of government.

Tuesday, August 4, 2009

Effects Of Global Warming


Global Warming


INTRODUCTION


Global warming is the increase in the average temperature of the Earth's near-surface air and oceans since the mid-20th century and its projected continuation. Global surface temperature increased 0.74 ± 0.18 °C (1.33 ± 0.32 °F) during the last century. The Intergovernmental Panel on Climate Change (IPCC) concludes that increasing greenhouse gas concentrations resulting from human activity such as fossil fuel burning and deforestation caused most of the observed temperature increase since the middle of the 20th century.The IPCC also concludes that variations in natural phenomena such as solar radiation and volcanoes produced most of the warming from pre-industrial times to 1950 and had a small cooling effect afterward. These basic conclusions have been endorsed by more than 45 scientific societies and academies of science,[B] including all of the national academies of science of the major industrialized countries. A small number of scientists dispute the consensus view.

Climate model projections summarized in the latest IPCC report indicate that the global surface temperature will probably rise a further 1.1 to 6.4 °C (2.0 to 11.5 °F) during the twenty-first century. The uncertainty in this estimate arises from the use of models with differing sensitivity to greenhouse gas concentrations and the use of differing estimates of future greenhouse gas emissions. Some other uncertainties include how warming and related changes will vary from region to region around the globe. Most studies focus on the period up to the year 2100. However, warming is expected to continue beyond 2100 even if emissions stop, because of the large heat capacity of the oceans and the long lifetime of carbon dioxide in the atmosphere.

An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, probably including expansion of subtropical deserts.The continuing retreat of glaciers, permafrost and sea ice is expected, with warming being strongest in the Arctic. Other likely effects include increases in the intensity of extreme weather events, species extinctions, and changes in agricultural yields.



Greenhouse Gases


The greenhouse effect is the process by which absorption and emission of infrared radiation by gases in the atmosphere warm a planet's lower atmosphere and surface. It was discovered by Joseph Fourier in 1824 and was first investigated quantitatively by Svante Arrhenius in 1896.

Existence of the greenhouse effect as such is not disputed, even by those who do not agree that the recent temperature increase is attributable to human activity. The question is instead how the strength of the greenhouse effect changes when human activity increases the concentrations of greenhouse gases in the atmosphere.

Naturally occurring greenhouse gases have a mean warming effect of about 33 °C (59 °F).The major greenhouse gases are water vapor, which causes about 36–70 percent of the greenhouse effect; carbon dioxide (CO2), which causes 9–26 percent; methane (CH4), which causes 4–9 percent; and ozone (O3), which causes 3–7 percent.Clouds also affect the radiation balance, but they are composed of liquid water or ice.

Human activity since the Industrial Revolution has increased the amount of greenhouse gases in the atmosphere, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. The concentrations of CO2 and methane have increased by 36% and 148% respectively since the mid-1700s. These levels are considerably higher than at any time during the last 650,000 years, the period for which reliable data has been extracted from ice cores.Less direct geological evidence indicates that CO2 values this high were last seen approximately 20 million years ago. Fossil fuel burning has produced about three-quarters of the increase in CO2 from human activity over the past 20 years. Most of the rest is due to land-use change, particularly deforestation.

CO2 concentrations are continuing to rise due to burning of fossil fuels and land-use change. The future rate of rise will depend on uncertain economic, sociological, technological, and natural developments. Accordingly, the IPCC Special Report on Emissions Scenarios gives a wide range of future CO2 scenarios, ranging from 541 to 970 ppm by the year 2100. Fossil fuel reserves are sufficient to reach these levels and continue emissions past 2100 if coal, tar sands or methane clathrates are extensively exploited.

The destruction of stratospheric ozone by chlorofluorocarbons is sometimes mentioned in relation to global warming. Although there are a few areas of linkage, the relationship between the two is not strong. Reduction of stratospheric ozone has a cooling influence, but substantial ozone depletion did not occur until the late 1970s. Tropospheric ozone contributes to surface warming.

Environmental Effects

It usually is impossible to connect specific weather events to global warming. Instead, global warming is expected to cause changes in the overall distribution and intensity of events, such as changes to the frequency and intensity of heavy precipitation. Broader effects are expected to include glacial retreat, Arctic shrinkage, and worldwide sea level rise. Some effects on both the natural environment and human life are, at least in part, already being attributed to global warming. A 2001 report by the IPCC suggests that glacier retreat, ice shelf disruption such as that of the Larsen Ice Shelf, sea level rise, changes in rainfall patterns, and increased intensity and frequency of extreme weather events are attributable in part to global warming. Other expected effects include water scarcity in some regions and increased precipitation in others, changes in mountain snowpack, and some adverse health effects from warmer temperatures.

Social and economic effects of global warming may be exacerbated by growing population densities in affected areas. Temperate regions are projected to experience some benefits, such as fewer cold-related deaths.The newer IPCC Fourth Assessment Report summary reports that there is observational evidence for an increase in intense tropical cyclone activity in the North Atlantic Ocean since about 1970, in correlation with the increase in sea surface temperature, but that the detection of long-term trends is complicated by the quality of records prior to routine satellite observations. The summary also states that there is no clear trend in the annual worldwide number of tropical cyclones.

Additional anticipated effects include sea level rise of 0.18 to 0.59 meters (0.59 to 1.9 ft) in 2090-2100 relative to 1980-1999,new trade routes resulting from arctic shrinkage, possible thermohaline circulation slowing, increasingly intense hurricanes and extreme weather events, reductions in the ozone layer, changes in agriculture yields, changes in the range of climate-dependent disease vectors, which has been linked to increases in the prevalence of malaria and dengue fever, and ocean oxygen depletion. Increased atmospheric CO2 increases the amount of CO2 dissolved in the oceans. CO2 dissolved in the ocean reacts with water to form carbonic acid, resulting in ocean acidification. Ocean surface pH is estimated to have decreased from 8.25 near the beginning of the industrial era to 8.14 by 2004, and is projected to decrease by a further 0.14 to 0.5 units by 2100 as the ocean absorbs more CO2. Heat and carbon dioxide trapped in the oceans may still take hundreds years to be re-emitted, even after greenhouse gas emissions are eventually reduced.Since organisms and ecosystems are adapted to a narrow range of pH, this raises extinction concerns and disruptions in food webs. One study predicts 18% to 35% of a sample of 1,103 animal and plant species would be extinct by 2050, based on future climate projections.


How To Control Global warming

Control the increase in environment CO2 because it is the main component which increase global warming.

Stop using the excess amount of Chlorofluorocarbons which are used in fridges for coldness.

Use compressed natural gas (CNG) in vehicles for transport purposes.

Stop use of excess amount of chemicals in industories which cause acid rain in environment.

Do not use plastic things in excess amount because they help in increase of global warming.